
Time-Synchronized Visualization of Arbitrary Data Streams∗

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center

M/S 258-6, Moffett Field, CA 94035 U.S.A.
paul.kolano@nasa.gov

ABSTRACT

Savors is a visualization framework that supports the ingestion of data streams created by arbitrary command
pipelines. Multiple data streams can be shown synchronized by time in the same or different views, which can be
arranged in any layout. These capabilities combined with a powerful parallelization mechanism and interaction
models already familiar to administrators allows Savors to display complex visualizations of data streamed from
many different systems with minimal effort. This paper presents the design and implementation of Savors and
provides example use cases that illustrate many of the supported visualization types.

Keywords: visualization, time synchronization, parallel data streams, data analysis, system monitoring

1. INTRODUCTION

Large computer installations involve huge numbers of interacting components that are subject to a multitude
of hardware failures, transient errors, software bugs, and misconfiguration. Monitoring the health, utilization,
security, and/or configuration of such installations is a challenging task. While various frameworks are available
to assist with these tasks at a high level, administrators must more often than not revert to using command line
tools on individual systems to get a low-level understanding of system behavior. The output from such tools can
be difficult to grasp on even a single system, so quickly becomes overwhelming when taken across many hosts.

A variety of visualization tools and techniques have been proposed to increase the amount of information that can
be processed by humans at once. Existing tools, however, do not provide the flexibility, scalability, or usability
needed to assist with all the varied information streams possible in large installations. In particular, these tools
often require data in a specific format and/or in a specific location with interfaces that have little relation to the
underlying commands from which the data originates.

This paper presents a new visualization framework called Savors, Synchronization And Visualization Of aRbitrary
Streams. The goal of Savors is to supercharge the command-line tools already used by administrators with pow-
erful visualizations that help them understand the output much more rapidly and with far greater scalability
across systems. Savors not only supports the output of existing commands, but does so in a manner consistent
with those commands by combining the line-editing capabilities of vi, the rapid window manipulation of GNU
screen, the power and compactness of perl expressions, and the elegance of Unix pipelines. Savors was designed
to support impromptu visualization, where the user can simply feed in the commands they were already using
to create alternate views with optional on-the-fly aggregation of information across many systems. In this way,
visualization becomes part of the administrator’s standard monitoring and analysis process with no need for a
priori aggregation of data at a centralized resource or conversion of the data into a predefined format.

Savors supports of all four combinations of single/multiple data streams and single/multiple views. That is,
Savors can show any number of data streams either consolidated in the same view or spread out across multiple
views. In multi-data scenarios, data streams can be synchronized by time allowing even distributed data streams
to be viewed in the same temporal context. In single-data multi-view scenarios, views are updated in lockstep
fashion so they show the same data at the same time. Together with its integrated parallelization capabilities,
this allows Savors to easily show meaningful results from across even very large installations.

∗ This work is supported by the NASA Advanced Supercomputing Division under Task Number ARC-013 (Contract
NNA07CA29C) with Computer Sciences Corporation

1

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



This paper is organized as follows. Section 2 presents related work. Section 3 discusses the Savors console. Section
4 details Savors data handling. Section 5 describes the Savors view components. Section 6 covers example use
cases and provides samples of available visualizations. Finally, Section 7 presents conclusions and related work.

2. RELATED WORK

A previous incarnation of Savors, dubbed the Scalable Aural-Visual Operations Room for Security, was dis-
cussed in previous work,12 but had several notable limitations including fixed views that were only applicable to
specifically formatted security data, no notion of synchronization between multiple views of even the same data,
and difficulty in manipulating the tools on large multi-monitor displays. An inspiration for the current version
was VisTextFlow-IP,23 which combines text and visual interfaces to allow administrators to get the benefit of
visualization while still interacting with the familiar text interface. While the goals are similar, VisTextFlow-IP
is limited to the one specific command that can be represented within its visualizations, limiting its generality.

Some tools are designed to assist administrators in visualizing information from specific types of services. Dos
Santos et al. visualize NFS servers, network data, and web servers using various 3D metaphors5 including cities,
cone trees, solar systems, pyramids, landscapes, and libraries. ENAVis14 shows the connectivity between hosts,
users, and applications using graphs of data derived from standard system tools including netstat, ps, and
lsof. Theia9 is a tool to diagnose problems in Hadoop clusters using heatmaps to show anomalies associated
with jobs over time. Hochheiser et al. use scatter plots to show various relations between URLs, hosts, and times
of web server logs,11 with radius and color representing request frequency and HTTP return status. While each
is useful for its specific domain, Savors was designed to be applicable across many different domains.

A number of techniques have been developed to visualize general log files. SeeLog6 shows entire log files on a
single screen using multiple columns of lines with length proportional to a single log message and colored by
message type. Frei et al. use a histogram matrix to analyze mail server logs,8 where the radius of the circles
in the grid shows the frequency of log message word count and the color indicates frequency changes between
intervals. LogView16 shows the contents of log file event clusters using a treemap colored by event type severity.
Girardin et al. describe an approach for real-time monitoring of logs10 using spring graphs, self-organizing maps,
and parallel coordinate plots. MieLog21 visualizes log files using four regions consisting of a heatmap of message
types, a time region depicting message frequency over a frequency timeline, an outline region similar to that of
a column of SeeLog, and the actual log messages in the highlighted area. Several of these views are useful and
may be incorporated into Savors in the future, but on their own do not support multiple views of the same data.

A variety of tools support the single-data multi-view model to show different perspectives of the same data.
RUMINT provides various coordinated security visualizations with DVR-like controls, which include binary
rainfall displays3 that map varying numbers of bits to pixels, parallel coordinate and scatter plots2 between
various protocol fields, and ASCII packet information. RUMINT was a primary inspiration for the previous
incarnation of Savors and several of its views and pause/step capabilities were emulated. The Visual Firewall13
shows four views of network traffic including parallel coordinate and glyph-based scatter plots between ports
and IP addresses, a network throughput graph, and a quad-axis diagram mapping IP address, subnet, IDS alert
type, and time. VIAssist4 show multiple views of network flow data including parallel coordinate plots, various
charts, a table lens, and summarized dashboard view. All of these tools provide useful visualizations but can
only process a single data stream at once so cannot correlate views across multiple files or hosts.

A limited number of visualization tools support the multi-data multi-view model. VisTrails1 allows the user to
create a matrix of related visualizations using a common sequence of visualization steps applied to different data
sets or different portions of the same data set. Lourenco et al. present a prototype visualization tool15 that can
show scatter plots, pie charts, treemaps, and parallel coordinate plots of multiple data sets with matching of
data columns to allow common filtering and colorization. Snap-Together Visualization17 allows users to combine
different views of a relational database and specify various coordinating actions between views such as loading
data in one view when items are selected in another. A similar tool is Improvise,22 which allows sophisticated
coordinations of actions such as selection, loading, and visualization of data to be specified via coordinated query
graphs. None of these tools are designed to handle real-time monitoring, however, where the data is in constant
flux and the complexities in their coordination models do not lend themselves well to impromptu visualization.

2

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



Figure 1. Savors console Figure 2. Display corresponding to console of Figure 1

Data analytics tools such as Splunk20 and the Elasticsearch ELK stack7 can ingest data streams from a variety
of sources into a searchable centralized database, which can be visualized in configurable web dashboards. The
expressiveness of database queries and flexibility of dashboard panels allows for full support of all combinations
of single/multiple data/views. While these systems offer powerful capabilities, their push-based data model does
not always scale and they require installation of additional software on each data producer when the data stream
does not support a standard forwarding mechanism such as syslog or SNMP. Savors instead uses a pull-based
data model with information retrieved from the source on demand and aggregated on-the-fly, allowing data to be
kept at its original location until needed and retrieved without additional software beyond existing ssh daemons.

3. CONSOLE

Savors consists of three components: a console, one or more data servers, and one or more views. The console
is responsible for user interaction, spawning data servers and views according to given command pipelines, and
controlling synchronization between data streams. The data servers are responsible for spawning and interacting
with the commands that generate data, manipulating the data as specified, and sending the data to the console
and views. Finally, the views are responsible for visualizing the data as specified on one or more displays.

Figures 1 and 2 show a sample console window and its associated views. The console contains the current view
layout in the upper left, a vi-like line editor and context-sensitive help in the upper right, and information about
the active view such as color mappings and data time/contents at the bottom. Savors is based on a model similar
to that of GNU screen where the display consists of one or more layouts that each contain one or more regions,
which themselves each house one or more windows, with each window corresponding to a single view. Multiple
windows can be created in each region with shuffling between them. Regions may be split both horizontally and
vertically allowing arbitrary layouts to be created. Like windows, multiple layouts can be created with shuffling
between them allowing a completely new set of windows to be swapped in with a single keystroke.

When a view is initialized, the console is responsible for spawning the view, finding and/or spawning the requested
data servers, and sending the appropriate messages to all involved entities to connect the view with the data
server(s). If a data server already exists that has the same specification as one given, the new view will be
hooked into that server midstream instead of spawning a new server. This both conserves resources as the same
data stream can be used by multiple views, as well as provides the synchronization for the single-data multi-view
model as all views with the same data specification will get their data from the same source at the same time.

The final responsibility of the console is to provide synchronization in both the multi-data single-view and multi-
data multi-view models. In these models, multiple concurrent processes generate arbitrary data asynchronously
at unknown intervals so the data servers must be explicitly directed when to provide their data to subscribed
views. Savors uses time as the synchronization medium so data servers are allowed to progress according to the
chronological order of their data. Data servers send every data line to the console first and only send the data
to subscribed views after the console has sent a ready notification to the server with the oldest data. The user
may specify different synchronization groups, allowing multiple time periods to be running at once.

3

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



4. DATA SERVERS

Each data server is responsible for spawning a given command pipeline (minus the view portion), transforming its
output according to a set of data directives, and sending the resulting data lines to the console and any subscribed
views. Views expect data lines formatted as fields separated by whitespace with the zeroth field containing certain
items parsed out by the data server such as the time. Fields are referenced using the shorthands fi (e.g. f2) for
a single field, fi-fj (e.g. f3-f5) for a range of fields, or fi,fj (e.g. f7,f8) for a list of fields. Since the command
output ingested by a data server may be in any format, user-specified data directives guide the server on how to
transform output. These directives are specified using an env command at the beginning of the pipeline with the
type of each directive as the variable name and the contents of the directive as the value (e.g. env time=f1-f3).

To gain an understanding of the directives that might be needed to natively handle the output of arbitrary
commands, a number of commonly used status commands were examined for common output patterns. Four
main characteristics of interest were identified including how time is associated with the output (per line: 34%,
per loop: 13%, untimed: 53%), whether headers were included from which labels could be parsed (yes: 25%,
no: 75%), whether fields were fixed within every data line (78%) or whether they could vary in location and/or
content (22%), and whether the command runs once and exits (47%) or (optionally) loops continuously (53%).

To support time variations, a time_grep directive can be used to identify the line in each loop with the time in
it, which the time directive is then evaluated against before being parsed into a Unix time. To support header
labels, a label_grep directive can be used to identify the line with the labels in it. A label directive may optionally
be specified to indicate the mapping between labels and fields when not an ordered one-to-one mapping. Since
headers and other output extraneous to the main data lines may occur in output, grep and grep_v directives may
be used to include and exclude lines, respectively. To support varying field locations/contents, a sed directive can
be used to rewrite lines as needed and a split directive can be used to split up lines with differing field separators.
Any parsing not possible with built-in directives can be done with an external program in the command pipeline.

To support commands that only execute once, a repeat directive can be used to rerun the command at a given
frequency. When repeat is used with untimed commands, all data within the same invocation is associated with
the same time. This avoids the problem with looping untimed commands where the data stream may block
waiting for an older stream resulting in inaccurate times given to data lines still in the pipe. Savors supports the
save and playback of data streams using the tee/tee_a and replay directives, which write/append to a save file
and replay such files at a given speed multiplier, respectively. Save files differ from the original data streams in
that all data transformations have already been carried out in the saved data. This is required to reproduce some
contextual information only found in the raw data streams such as timings associated with untimed commands.

Multi-data single-view data streams can be specified in two different ways. The data directive can be used to
create any number of interleaved parallel data streams with the special variable fD replaced with each value
wherever specified (e.g. ”data=1-n ssh hostfD“ can be used to create similar data streams on n hosts). A
second construct “(cmd1 & cmd2 & ... & cmdn)” can also be used to specify multiple parallel data streams
where each cmdi may be a full command pipeline with its own directives. This allows completely different
commands to be fed into the same view. To better support this model, a cut directive can be used to selectively
splice and reorder the list of fields to normalize the field contents across differing commands. The “data” directive
and parallelization construct are actually carried out within the console, which generates and spawns the full set
of data servers required. Also carried out within the console, is the sync directive, which allows synchronization
over multiple periods of time and/or disabling of synchronization. Data servers are only synchronized with other
servers in the same sync group allowing both real-time and historical data to be visualized concurrently.

5. VIEWS

The final command in each Savors pipeline describes how to view the data stream(s) created by the data server(s).
It consists of a view type for the command name and any desired options applicable to that view. Savors currently
supports eight primary view types (axis, chart, cloud, graph, grid, map, rain, and tree) with most primary types
also having various subtypes. Each view is a separate process that communicates with one or more data servers
and the console. Separating the views from the console allows for support of multi-host displays such as the

4

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



the NASA Advanced Supercomputing (NAS) Division’s hyperwall18 by allowing views to be spawned on the
backing systems. Separating the views also provides greater extensibility by allowing views to be implemented
in languages other than default (Perl/Tk) as long as they implement a simple TCP protocol directing them to
change size/iconification, connect to a server, receive data and labels, and exit.

The options accepted by each view differ according to type, but the main options common to all of them are
--fields, which specifies the list of expressions to visualize, --color, which specifies how the resulting objects should
be colored, --ctype, which specifies alternative colorization schemes such as a common hash, --grep, which allows
views to show different items from a common data stream, and --period, which specifies how much time (within
the data) to wait until visualizing the next batch of data lines. Savors follows the methodology that simple
things should be easy to specify while complex things should be possible. In this way, the fields and color options
can be built from either simple field terms (i.e. --fields=f2-f4) or full perl expressions (e.g. --fields=’use
File::Basename;dirname(f9)’), which allows significant flexibility while supporting the more common simple
case easily. Various convenience functions are supported within the perl expressions for IP address geolocation,
host resolution, and anonymization of IP addresses, host names, and user names.

Savors supports multi-host displays allowing single views to be split arbitrarily across physical displays of differing
resolutions. To support such displays, each component host computes all views of which it is a part at full relative
resolution (i.e. the resolution of the full-size view if all displays were the same as the local display). The host
then uses an appropriate X11 -geometry option to offset the origin of the view such that it will only display
the portion for which it is responsible. While this results in inefficient CPU and memory utilization, it is a
general-purpose solution that was easily implemented without the need to modify each individual view type.

To more easily spawn multiple related views across the same or different displays, two additional view-related
data directives are available. The view directive is similar to the “data” directive in that it can be used to create
any number of views with the special variable fV replaced with each value wherever specified. These views are
treated as a unit within the console and arranged according to the value of the layout directive using vertical
splits (e.g. layout=1-1), horizontal splits (e.g. layout=’1|1’), and grids (e.g. layout=2x3) with arbitrary
nesting. This feature allows parameter studies across different variables to be trivially created. For example, the
construct “view=1-8 layout=4x2 ssh hostfV” can be used to create a 4x2 grid of views that each show the
same visualization of different hosts (such as the bottom of Figure 7). These directives also support “console-less”
operation, where a given layout of specific views can be invoked in their own windows without the interactive
console window.

6. EXAMPLE USE CASES

Savors is a general-purpose framework that has been designed to operate with many forms of data in many
different domains. This section illustrates just a few of the possible use cases of Savors in the domain of system
administration with emphasis on its multiple data stream parallelization and synchronization capabilities.

6.1 Configuration Validation

Configuration management systems greatly reduce the burden of maintaining large computer installations but
cannot guarantee that running configurations are as expected due to run-time changes by administrators, errors
in the management configuration itself, and/or accidental omissions of particular systems. With its ability to
easily spawn parallel commands and automatically aggregate the results, Savors can assist in validating running
configurations across many hosts. For example, consider the file systems mounted on a host, which, even with
the same static configuration file, may differ due manual mounts/unmounts by an administrator, mount options
changed in response to errors, inability to mount properly due to network failures or file server misconfigurations,
etc. Figure 3 shows a sparse adjacency matrix between the mounted file systems and their mount options colored
by file system across eight cluster front-ends that are meant to be equivalent. When the mount configuration
is consistent, each column would have eight blocks of the same color indicating that the option represented by
the column is present on the file system represented by the row and that the file system is mounted on all eight
hosts. In this case, differences can be seen in four of the file systems. This same technique can be used to quickly
spot other configuration differences across large numbers of hosts.

5

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



Figure 3. Grid of mount options colored by file system Figure 4. Graph of ssh connectivity

Even when a configuration is consistent between systems, it may not necessarily implement its desired intent.
For example, consider an ssh access policy where internal hosts may connect with any internal, DMZ, or external
host, but external hosts must first pass through a DMZ bastion to access internal hosts. Truly validating that
the relevant configuration files across all systems and devices comply with this policy may take a security expert
considerable time. A lightweight sanity check of this policy against the current network state, however, is easily
achieved by Savors in a few seconds. Figure 4 shows a graph of ssh connections between the three types of
systems based on output from the ss command across 14 cluster front-ends. The graph is directed from the
origin of each ssh connection to its destination and colored red if it involves a DMZ bastion, orange if it involves
two internal hosts, and yellow if it involves an external host. While it does not provide true assurance that
the policy is correctly implemented, it does suggest that internal hosts are able to access all types of hosts,
connections can, for the most part, be traced back to a DMZ bastion, and, for this instant at least, no external
host is directly accessing an internal host.

6.2 Historical Log Analysis

Finding the root cause of a failure in a large installation may involve scouring the log files of many different
systems in the relevant timeframe to try to identify the problem that occurred first. Savors can greatly simplify
this process because it can pull log data directly from any of the involved hosts/devices and display events in
the exact temporal order that they occurred. For example, an error accessing a file on a Lustre file system may
be caused by issues such as a crash of the local client, a failure of the interconnect to the servers, or a bug on
the server. Figure 5 shows three text rainfalls of Lustre errors in historical syslog files (seven hosts interleaved
on top and two hosts on their own on bottom). By pausing the data streams and stepping through them in the
order of occurrence, finding the first indication of a problem becomes a trivial exercise. Unlike other approaches
where logs must be consolidated into a single database, which may not always be feasible due to scalability
and/or reliability concerns, the pull-based model of Savors allows logs to be streamed directly from the source
and aggregated dynamically on-the-fly.

Besides root cause analysis, logs are also valuable in identifying various patterns and/or anomalies to assist
with items such as capacity planning and intrusion detection. Humans can, in many cases, spots patterns and
anomalies more easily than machines as long as the data is presented properly. Because of its time synchronization
capabilities, Savors is particularly adept at visually aligning logs collected over fixed intervals for finding patterns
across time periods. Figure 6 shows seven stacked line charts, each of which depicts the network I/O rate (from
the collectl utility) over the same portion of different days shifted into the same context to allow regions of
interest such as those with similar shapes or periods of repeated high utilization to be quickly spotted. From
the figure, regions of similar activity start around 2am and 3am, which correspond to daily backups that occur
at the same time every morning on the transfer bastion on which these logs were collected. This type of view
would not be possible without time synchronization as the underlying collectl streams may run at different
rates depending on the amount of activity in the logs being replayed. The automatic synchronization of Savors,
however, allows this same technique is be easily applied to any logs over multiple time periods.

6

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



Figure 5. Rainfall of Lustre syslog errors colored by host Figure 6. Charts of network activity per day

6.3 Real-Time Monitoring

Monitoring the state of large installations is essential for determining how resources are being used, predicting
resource exhaustion, and resolving resource conflicts between users. For example, monitoring CPU and memory
utilization on front-end systems can help administrators determine if users are performing work on front-end
systems that should be done on back-end compute resources, if the amount of installed memory is sufficient for
common tasks, how to better balance the load between high utilization users, etc. This kind of information
does not typically reside in files, but is instead queried from kernel memory using standard system tools such as
top and ps, which is ideal for the stream-based model of Savors. Figure 7 shows two stacked views representing
different levels of detail about CPU and memory utilization across eight systems generated from ps data streams.
The top view is a word cloud of user/command pairs colored by command and sized by cumulative CPU time.
This view quickly shows which processes are consuming the most CPU time across all systems (MATLAB, idl,
and shiftc). The bottom view is a composite hive plot showing low-level stats about the individual processes
on each of the systems, which makes it possible to see outliers and clumping within the data.

Figure 7. Word cloud/hive plots of CPU/memory usage Figure 8. Chart, treemap, and grid of file system utilization

Even more critical than monitoring CPU and memory utilization is monitoring distributed file systems shared
by large numbers of resources since a file system that is full, down, or overutilized may cause CPU cycles to be
wasted when job results cannot be written to disk or overall job performance is decreased due to I/O contention.
Many file systems have no way of determining global load besides monitoring the I/O of all the individual systems
that mount them, which is a task that Savors can easily handle. Figure 8 shows three stacked views representing
different levels of detail about file system activity generated from two NAS-developed utilities called fstop and
ltop, which show file system activity on one host and Lustre activity across all hosts, respectively. The top view
is a bar chart of front-end I/O generated from user commands compared to total I/O of a single Lustre file system,

7

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015



incorporating data from fstop on 10 hosts and ltop on one host that was normalized into a form consistent
across both and aggregated into a single view not possible otherwise. The middle view is a treemap showing the
directories generating the most front-end I/O activity across each host, which provides an understanding of the
relative I/O of each host, the file systems with the most activity, and the users generating that activity. The
bottom view is a sparse heatmap showing contention between the disks of all Lustre file systems by user, where
multiple blocks colored in the same column indicate contention for the corresponding disk.

7. CONCLUSIONS AND FUTURE WORK

This paper has described a new framework called Savors, Synchronization And Visualization Of aRbitrary
Streams. Savors allows the normal command pipelines used by administrators to be visualized in a variety of ways.
Commands can be trivially parallelized across multiple hosts with the resulting data streams synchronized by time
within the same or different views. Savors was designed to support an impromptu model of visualization where
visualization becomes just another standard tool in the administrator’s workflow of monitoring and analyzing
system components without the need to centralize or reformat data streams ahead of time. Savors is open source
and available for download.19

There are a number of directions for future research. The console should be given the ability to save/restore
layouts as is already possible for individual views. Likewise, the ability to step backward should be added as
is already possible in the forward direction. Also needed is a better mechanism to display static data, which
can currently be emulated using a repeat directive, but should be a direct capability. There are a variety of
additional views that could be incorporated including dendrograms, voronoi diagrams, particle simulations, and
bubble charts. Support for a large graph library and a faster canvas should also be investigated.

REFERENCES
1. L. Bavoil, S.P. Callahan, P.J. Crossno, J. Freire, C.E. Scheidegger, C.T. Silva, H.T. Vo: VisTrails: Enabling Interactive Multiple-View

Visualizations. 16th IEEE Conf. on Visualization, Oct. 2005.
2. G. Conti, K. Abdullah: Passive Visual Fingerprinting of Network Attack Tools. 1st ACM Wkshp. on Visualization and Data Mining

for Computer Security, Oct. 2004.
3. G. Conti, J. Grizzard, M. Ahamad, H. Owen: Visual Exploration of Malicious Network Objects Using Semantic Zoom, Interactive

Encoding and Dynamic Queries. 2nd IEEE Intl. Wkshp. on Visualization for Computer Security, Oct. 2005.
4. A.D. D’Amico, J.R. Goodall, D.R. Tesone, J.K. Kopylec: Visual Discovery in Computer Network Defense. IEEE Computer Graphics

and Applications, 27(5), Sept./Oct. 2007.
5. C.R. Dos Santos, P. Gros: Multiple Views in 3D Metaphoric Information Visualization. 6th IEEE Intl. Conf. on Information Visual-

ization, Jul. 2002.
6. S.G. Eick, M.C. Nelson, J.D. Schmidt: Graphical Analysis of Computer Log Files. Comm. of the ACM, 37(12), Dec. 1994.
7. Elasticsearch ELK stack. http://elasticsearch.org/overview.
8. A. Frei, M. Rennhard: Histogram Matrix: Log File Visualization for Anomaly Detection. 3rd IEEE Intl. Conf. on Availability, Relia-

bility, and Security, Mar. 2008.
9. E. Garduno, S.P. Kavulya, J. Tan, R. Gandhi, P. Narasimhan: Theia: Visual Signatures for Problem Diagnosis in Large Hadoop

Clusters. 26th USENIX Large Installation System Administration Conf., Dec. 2012.
10. L. Girardin, D. Brodbeck: A Visual Approach for Monitoring Logs. 12th USENIX Large Installation System Administration Conf.,

Dec. 1998.
11. H. Hochheiser, B. Shneiderman: Using Interactive Visualizations of WWW Log Data to Characterize Access Patterns and Inform Site

Design. Jour. of the American Society for Information Science and Technology, 52(4), Jan. 2001.
12. P.Z. Kolano: A Scalable Aural-Visual Environment for Security Event Monitoring, Analysis, and Response. 3rd Intl. Symp. on Visual

Computing, Nov. 2007.
13. C. Lee, J. Trost, N. Gibbs, R. Beyah, J.A. Copeland: Visual Firewall: Real-time Network Security Monitor. 2nd IEEE Intl. Wkshp.

on Visualization for Computer Security, Oct. 2005.
14. Q. Liao, A. Blaich, A. Striegel, D. Thain: ENAVis: Enterprise Network Activities Visualization. 22nd USENIX Large Installation

System Administration Conf., Nov. 2008.
15. R.A.d.M Lourenco, R.V. Guimaraes, N.J.S. Carneiro, et al.: Exploring, Comparing and Coordinating Multiple Datasets in an Infor-

mation Visualization Tool. 16th IEEE Intl. Conf. on Information Visualization, Jul. 2012.
16. A. Makanju, S. Brooks, A.N. Zincir-Heywood, E.E. Milios: Logview: Visualizing Event Log Clusters. 6th IEEE Conf. on Privacy,

Security, and Trust, Oct. 2008.
17. C. North, B. Shneiderman: Snap-Together Visualization: A User Interface for Coordinating Visualizations via Relational Schemata.

5th Intl. ACM Working Conf. on Advanced Visual Interfaces, May 2000.
18. T.A. Sandstrom, C. Henze, C. Levit: The hyperwall. 1st Intl. Conf. on Coordinated and Multiple Views in Exploratory Visualization,

Jul. 2003.
19. Savors. http://savors.sf.net.
20. Splunk. http://www.splunk.com.
21. T. Takada, H. Koike: MieLog: A Highly Interactive Visual Log Browser Using Information Visualization and Statistical Analysis. 16th

USENIX Large Installation System Administration Conf., Nov. 2002.
22. C. Weaver: Building Highly-Coordinated Visualizations in Improvise. 10th IEEE Symp. on Information Visualization, Oct. 2004.
23. W. Yurcik, R.S. Thompson, M.B. Twidale, E.M. Rantanen: If You Can’t Beat ’Em, Join ’Em: Combining Text and Visual Interfaces

for Security-System Administration. ACM Interactions, 14(1), Jan./Feb. 2007.

8

Proc. of the 22nd IS&T/SPIE Conf. on Visualization and Data Analysis, San Francisco, CA, Feb. 9-11, 2015


